Most existing methods for multi-source unsupervised domain adaptation (UDA) rely on a common feature encoder to extract domain-invariant features. However, learning such an encoder involves updating the parameters of the entire network, which makes the optimization computationally expensive, particularly when coupled with min-max objectives. Inspired by recent advances in prompt learning that adapts high-capacity deep models for downstream tasks in a computationally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet efficient two-stage framework for multi-source UDA. Given a source and target domain pair, MPA first trains an individual prompt to minimize the domain gap through a contrastive loss, while tuning only a small set of parameters. Then, MPA derives a low-dimensional latent space through an auto-encoding process that maximizes the agreement of multiple learned prompts. The resulting embedding further facilitates generalization to unseen domains. Extensive experiments show that our method achieves state-of-the-art results on popular benchmark datasets while requiring substantially fewer tunable parameters. To the best of our knowledge, we are the first to apply prompt learning to the multi-source UDA problem and our method achieves the highest reported average accuracy of 54.1% on DomainNet, the most challenging UDA dataset to date, with only 15.9M parameters trained. More importantly, we demonstrate that the learned embedding space can be easily adapted to novel unseen domains.
翻译:多数现有的多源且不受监督的域适应方法(UDA)都依赖于一个通用的特性编码器来提取域变量特征。然而,学习这样的编码器需要更新整个网络的参数,从而使优化的计算成本昂贵,特别是当与微积分目标相结合时。由于在快速学习方面最近取得进展,以计算经济方式为下游任务改造高容量深度模型,我们引入了多功能匹配(MPA),这是多源 UDA的一个简单而有效的两阶段框架。考虑到源对和目标域对子,MPA首先培训个人迅速通过对比性损失将域间差距缩小到最小,同时只调整一小套参数。然后,MPA通过自动编码进程获得一个低维潜藏空间,使多学提示的一致最大化。因此,我们引入了多功能匹配,我们的方法在通用基准数据集中取得了最新的结果,同时需要大量缩略图参数。我们最了解的情况是,我们首先将54个域域域域内存数据最精确度应用到多源数据的平均日期。