When solving time-dependent hyperbolic conservation laws on cut cell meshes one has to overcome the small cell problem: standard explicit time stepping is not stable on small cut cells if the time step is chosen with respect to larger background cells. The domain of dependence (DoD) stabilization is designed to solve this problem in a discontinuous Galerkin framework. It adds a penalty term to the space discretization that restores proper domains of dependency. In this contribution we introduce the DoD stabilization for solving the advection equation in 2d with higher order. We show an $L^2$ stability result for the stabilized semi-discrete scheme for arbitrary polynomial degrees $p$ and provide numerical results for convergence tests indicating orders of $p+1$ in the $L^1$ norm and between $p+\frac 1 2$ and $p+1$ in the $L^{\infty}$ norm.
翻译:当解决对切开的细胞膜的基于时间的双曲保护法律时,人们必须克服小细胞问题:如果为较大的背景细胞选择时间步骤,标准明确的时间步骤对小切细胞并不稳定。依赖性(DoD)稳定化领域的设计是为了在不连续的Galerkin框架内解决这一问题。它为恢复适当依赖区的空间离散增加了一个惩罚条件。在此贡献中,我们引入 DoD稳定化法,以用更高顺序以2d 解决对流方程。我们为任意多球度的稳定的半分解性计划显示一个$2的稳定性结果,并为趋同试验提供数字结果,表明1美元标准值为p+1美元,在1美元标准值为$P1美元和1美元之间。我们引入了2美元和1美元之间在1美元标准值为$L ⁇ infty}标准值。