For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.
翻译:对于具有多倍噪声的随机热方程式,我们考虑在拉普尔操作员面前估计异差参数的问题。 根据在空间的当地观测, 我们首先研究一个用于添加噪音的测算器。 稳定的中央限值理论显示, 这个测算器是一致的, 且无杂交的正常。 考虑到四变, 我们提议了两个新的测算器。 它们的限制分布显示的( 有条件的)差异较小, 最后一个测算器也用于消失噪音水平 。 证据基于本地近似结果, 以克服复杂的非线性, 并基于一个稳定的中心限值, 用于对圆柱形布朗运动进行随机合成的测算器。 模拟结果显示了理论结果 。</s>