Soft robots present unique capabilities, but have been limited by the lack of scalable technologies for construction and the complexity of algorithms for efficient control and motion, which depend on soft-body dynamics, high-dimensional actuation patterns, and external/on-board forces. This paper presents scalable methods and platforms to study the impact of weight distribution and actuation patterns on fully untethered modular soft robots. An extendable Vibrating Intelligent Piezo-Electric Robot (eViper), together with an open-source Simulation Framework for Electroactive Robotic Sheet (SFERS) implemented in PyBullet, was developed as a platform to study the sophisticated weight-locomotion interaction. By integrating the power electronics, sensors, actuators, and batteries on-board, the eViper platform enables rapid design iteration and evaluation of different weight distribution and control strategies for the actuator arrays, supporting both physics-based modeling and data-driven modeling via on-board automatic data-acquisition capabilities. We show that SFERS can provide useful guidelines for optimizing the weight distribution and actuation patterns of the eViper to achieve the maximum speed or minimum cost-of-transportation (COT).
翻译:软软机器人具有独特的能力,但因缺乏可伸缩的建筑技术以及高效控制和运动的算法的复杂性而受到限制,这些算法取决于软体动态、高维振动模式和外部/机内力量。本文件介绍了可伸缩的方法和平台,以研究重量分布和动力模式对完全不接接的软软软机器人的影响。可扩展的振动智能型派电子电动机器人(eViper),以及PyBullet实施的开放源模拟框架(SFERS),作为研究尖端重力-电动互动的平台。通过将电动电子、传感器、动能器和机内电池整合在一起,eViper平台能够快速设计对不同重量分布和控控控战略的转换和评价,支持基于物理的模型和通过机载自动数据采集能力驱动的数据模型。我们显示SFERS可以提供优化重量分布和最大速度移动速度模式的有用指南(实现电子速度的最小成本或最大移动模式)。</s>