In domains where agents interact strategically, game theory is applied widely to predict how agents would behave. However, game-theoretic predictions are based on the assumption that agents are fully rational and believe in equilibrium plays, which unfortunately are mostly not true when human decision makers are involved. To address this limitation, a number of behavioral game-theoretic models are defined to account for the limited rationality of human decision makers. The "quantal cognitive hierarchy" (QCH) model, which is one of the more recent models, is demonstrated to be the state-of-art model for predicting human behaviors in normal-form games. The QCH model assumes that agents in games can be both non-strategic (level-0) and strategic (level-$k$). For level-0 agents, they choose their strategies irrespective of other agents. For level-$k$ agents, they assume that other agents would be behaving at levels less than $k$ and best respond against them. However, an important assumption of the QCH model is that the distribution of agents' levels follows a Poisson distribution. In this paper, we relax this assumption and design a learning-based method at the population level to iteratively estimate the empirical distribution of agents' reasoning levels. By using a real-world dataset from the Swedish lowest unique positive integer game, we demonstrate how our refined QCH model and the iterative solution-seeking process can be used in providing a more accurate behavioral model for agents. This leads to better performance in fitting the real data and allows us to track an agent's progress in learning to play strategically over multiple rounds.
翻译:在代理商进行战略互动的领域,游戏理论被广泛应用,以预测代理商的行为。然而,游戏理论预测所依据的假设是,代理商完全理性,相信平衡游戏,不幸的是,当人类决策者参与时,这种平衡游戏大多不是真实的。为了解决这一限制,一些行为游戏理论模型被确定为人类决策者理性有限的原因。“横向认知等级”模式(QCH)模式(QCH)是最新模型之一,被证明是预测正常形式游戏中人类行为的最新模型。QCH模型假设游戏中的代理商既可以是非战略性的(0级),也可以是战略游戏游戏游戏,但不幸的是,当人类决策者参与时,这种假设大多是不真实的。对于10级代理商来说,他们选择自己的策略,而不管其他代理商的理性有限。对于水平而言,其他代理商将表现在低于美元的水平上,并且对其做出最好的反应。然而,QCH模型的一个重要假设是,在正常形式游戏中,代理商的分布会遵循Poisson的分布方式。在本文件中,我们放松这一假设,这个游戏的代理商可以选择一种在更精确的游戏中,在真实的排序中,我们使用一个最精确的排序中,我们使用一个最精确的代理商在真实的排序中,我们使用一个最精确的排序中,我们使用一个最精确的排序中,我们使用一个最精确的排序的计算方法来学习了一种方法,我们使用一个在真实的排序的排序的排序的排序的排序,我们使用一个比。</s>