In domains where agents interact strategically, game theory is applied widely to predict how agents would behave. However, game-theoretic predictions are based on the assumption that agents are fully rational and believe in equilibrium plays, which unfortunately are mostly not true when human decision makers are involved. To address this limitation, a number of behavioral game-theoretic models are defined to account for the limited rationality of human decision makers. The "quantal cognitive hierarchy" (QCH) model, which is one of the more recent models, is demonstrated to be the state-of-art model for predicting human behaviors in normal-form games. The QCH model assumes that agents in games can be both non-strategic (level-0) and strategic (level-$k$). For level-0 agents, they choose their strategies irrespective of other agents. For level-$k$ agents, they assume that other agents would be behaving at levels less than $k$ and best respond against them. However, an important assumption of the QCH model is that the distribution of agents' levels follows a Poisson distribution. In this paper, we relax this assumption and design a learning-based method at the population level to iteratively estimate the empirical distribution of agents' reasoning levels. By using a real-world dataset from the Swedish lowest unique positive integer game, we demonstrate how our refined QCH model and the iterative solution-seeking process can be used in providing a more accurate behavioral model for agents. This leads to better performance in fitting the real data and allows us to track an agent's progress in learning to play strategically over multiple rounds.


翻译:在代理商进行战略互动的领域,游戏理论被广泛应用,以预测代理商的行为。然而,游戏理论预测所依据的假设是,代理商完全理性,相信平衡游戏,不幸的是,当人类决策者参与时,这种平衡游戏大多不是真实的。为了解决这一限制,一些行为游戏理论模型被确定为人类决策者理性有限的原因。“横向认知等级”模式(QCH)模式(QCH)是最新模型之一,被证明是预测正常形式游戏中人类行为的最新模型。QCH模型假设游戏中的代理商既可以是非战略性的(0级),也可以是战略游戏游戏游戏,但不幸的是,当人类决策者参与时,这种假设大多是不真实的。对于10级代理商来说,他们选择自己的策略,而不管其他代理商的理性有限。对于水平而言,其他代理商将表现在低于美元的水平上,并且对其做出最好的反应。然而,QCH模型的一个重要假设是,在正常形式游戏中,代理商的分布会遵循Poisson的分布方式。在本文件中,我们放松这一假设,这个游戏的代理商可以选择一种在更精确的游戏中,在真实的排序中,我们使用一个最精确的排序中,我们使用一个最精确的代理商在真实的排序中,我们使用一个最精确的排序中,我们使用一个最精确的排序中,我们使用一个最精确的排序的计算方法来学习了一种方法,我们使用一个在真实的排序的排序的排序的排序的排序,我们使用一个比。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
13+阅读 · 2019年11月14日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
27+阅读 · 2023年2月10日
Arxiv
13+阅读 · 2019年11月14日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员