In this paper, we propose the Fourier Discrepancy Function, a new discrepancy to compare discrete probability measures. We show that this discrepancy takes into account the geometry of the underlying space. We prove that the Fourier Discrepancy is convex, twice differentiable, and that its gradient has an explicit formula. We also provide a compelling statistical interpretation. Finally, we study the lower and upper tight bounds for the Fourier Discrepancy in terms of the Total Variation distance.
翻译:在本文中,我们建议使用Fourier Dismission 函数,这是用于比较离散概率度值的新差异。我们表明,这一差异考虑到了基础空间的几何特征。我们证明,Fourier Dismission is convex, 是两个不同的, 其梯度有一个明确的公式。我们还提供了令人信服的统计解释。最后,我们研究了Fourier 差异值的上下紧界线,即总变化距离。