In this paper, we propose the Fourier Discrepancy Function, a new discrepancy to compare discrete probability measures. We show that this discrepancy takes into account the geometry of the underlying space. We prove that the Fourier Discrepancy is convex, twice differentiable, and that its gradient has an explicit formula. We also provide a compelling statistical interpretation. Finally, we study the lower and upper tight bounds for the Fourier Discrepancy in terms of the Total Variation distance.


翻译:在本文中,我们建议使用Fourier Dismission 函数,这是用于比较离散概率度值的新差异。我们表明,这一差异考虑到了基础空间的几何特征。我们证明,Fourier Dismission is convex, 是两个不同的, 其梯度有一个明确的公式。我们还提供了令人信服的统计解释。最后,我们研究了Fourier 差异值的上下紧界线,即总变化距离。

0
下载
关闭预览

相关内容

专知会员服务
73+阅读 · 2021年5月28日
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员