This paper concerns the Time-Domain Full Waveform Inversion (FWI) for dispersive and dissipative poroelastic materials. The forward problem is an initial boundary value problem (IBVP) of the poroelastic equations with a memory term; the FWI is formulated as a minimization problem of a least-square misfit function with the (IBVP) as the constraint. In this paper, we derive the adjoint problem of this minimization problem, whose solution can be applied to computed the direction of steepest descent in the iterative process for minimization. The adjoint problem has a similar numerical structure as the forward problem and hence can be solved by the same numerical solver. Because the tracking of the energy evolution plays an important role in the FWI for dissipative and dispersive equations, the energy analysis of the forward system is also carried out in this paper.
翻译:本文涉及用于分散和散散射孔动材料的“ 时间- 域全波变换” (FWI) 。 远端问题是带有内存术语的孔动方程式的初始边界值问题( IBVP ) ; FWI 被表述为与( IBVP ) 最不相容功能最差的最小化问题 。 在本文中, 我们从这个最小化问题中得出一个共同的问题, 这个问题的解决方案可以用于计算迭接进程最小化时最陡度下降的方向 。 连接问题与远端问题有着相似的数字结构, 因而可以由同一个数字解答器解决 。 由于能源演变的跟踪在FWI 中对于消散和分散式方程式起着重要作用, 远方系统的能量分析也在本文中进行 。