In this paper, we consider a distributed lossy compression network with $L$ encoders and a decoder. Each encoder observes a source and compresses it, which is sent to the decoder. Moreover, each observed source can be written as the sum of a target signal and a noise which are independently generated from two symmetric multivariate Gaussian distributions. The decoder jointly constructs the target signals given a threshold on the mean squared error distortion. We are interested in the minimum compression rate of this network versus the distortion threshold which is known as the \emph{rate-distortion function}. We derive a lower bound on the rate-distortion function by solving a convex program, explicitly. The proposed lower bound matches the well-known Berger-Tung's upper bound for some values of the distortion threshold. The asymptotic expressions of the upper and lower bounds are derived in the large $L$ limit. Under specific constraints, the bounds match in the asymptotic regime yielding the characterization of the rate-distortion function.
翻译:在本文中, 我们考虑一个包含 $L$ 编码器和解码器的分布式损耗压缩网络。 每个编码器都观察一个源并压缩它, 它被发送到解码器。 此外, 每个观察到的源可以写成目标信号和噪音的总和, 这些信号和噪音是由两个对称的多变量 Gaussian 分布所独立生成的。 解码器共同构建目标信号, 给出了平均正方位错误扭曲的阈值 。 我们感兴趣的是这个网络的最小压缩速率和扭曲阈值( 被称为 \emph{ rate- disctory 函数 } ) 。 我们通过解析一个 convex 程序, 获得较低的调试功能约束。 提议的下限与著名的Berger- Tung 的上界值相匹配 。 上界和下界值的微调表达方式在大的 $L$ 限值中产生。 在特定的限制下, 受限, 受困制度中的界限相匹配, 导致 率扭曲函数 函数 。