The safe deployment of autonomous vehicles relies on their ability to effectively react to environmental changes. This can require maneuvering on varying surfaces which is still a difficult problem, especially for slippery terrains. To address this issue we propose a new approach that learns a surface-aware dynamics model by conditioning it on a latent variable vector storing surface information about the current location. A latent mapper is trained to update these latent variables during inference from multiple modalities on every traversal of the corresponding locations and stores them in a map. By training everything end-to-end with the loss of the dynamics model, we enforce the latent mapper to learn an update rule for the latent map that is useful for the subsequent dynamics model. We implement and evaluate our approach on a real miniature electric car. The results show that the latent map is updated to allow more accurate predictions of the dynamics model compared to a model without this information. We further show that by using this model, the driving performance can be improved on varying and challenging surfaces.
翻译:自主车辆的安全部署依赖于它们有效应对环境变化的能力。这可能需要在不同表面上操纵车辆,这仍然是一个棘手的问题,特别是在光滑的地形中。为了解决这个问题,我们提出了一种新方法,通过调节一个潜在变量向量来学习表面感知的动力学模型,该向量存储当前位置的表面信息。潜在映射器在每次遍历相应位置时从多种模式中更新这些潜在变量,并将它们存储在地图中。通过使用动力学模型的损失训练所有东西,我们强制潜在映射器学习一个潜在地图的更新规则,使其对于后续的动力学模型是有用的。我们在真实的小电车上实现和评估了我们的方法。结果表明,相对于没有此信息的模型来说,潜在映射可以更新以允许更准确地预测动力学模型。我们进一步展示,使用这个模型可以改善在不同的和具有挑战性的表面上的驾驶性能。