We consider relational semantics (R-models) for the Lambek calculus extended with intersection and explicit constants for zero and unit. For its variant without constants and a restriction which disallows empty antecedents, Andreka and Mikulas (1994) prove strong completeness. We show that it fails without this restriction, but, on the other hand, prove weak completeness for non-standard interpretation of constants. For the standard interpretation, even weak completeness fails. The weak completeness result extends to an infinitary setting, for so-called iterative divisions (Kleene star under division). We also prove strong completeness results for product-free fragments.
翻译:我们认为兰贝克微积分的关联语义学(R-models)具有交叉性,零和单位的直立常数为零和单位。对于其变体没有常数和限制,不允许空前列,Andreka和Mikulas(1994年)证明非常完整。我们证明它没有这种限制,但另一方面却证明对常数的不标准解释不够完整。对于标准解释来说,即使完整性不完善也失败了。完整性差的结果扩大到所谓的迭代分形(分解下的Kleene恒星)的不完善环境。我们也证明无产品碎片的完整结果也很强。