The implementation of discontinuous functions occurs in many of today's state-of-the-art partial differential equation solvers. However, in finite element methods, this poses an inherent difficulty: efficient quadrature rules available when integrating functions whose discontinuity falls in the element's interior are for low order degree polynomials, not easily extended to higher order degree polynomials, and cover a restricted set of geometries. Many approaches to this issue have been developed in recent years. Among them one of the most elegant and versatile is the equivalent polynomial technique. This method replaces the discontinuous function with a polynomial, allowing integration to occur over the entire domain rather than integrating over complex subdomains. Although eliminating the issues involved with discontinuous function integration, the equivalent polynomial tactic introduces its problems. The exact subdomain integration requires a machinery that quickly grows in complexity when increasing the polynomial degree and the geometry dimension, restricting its applicability to lower order degree finite element families. The current work eliminates this issue. We provide algebraic expressions to exactly evaluate the subdomain integral of any degree polynomial on parent finite element shapes cut by a planar interface. These formulas also apply to the exact evaluation of the embedded interface integral. We provide recursive algorithms that avoid overflow in computer arithmetic for standard finite element geometries: triangle, square, cube, tetrahedron, and prism, along with a hypercube of arbitrary dimensions.
翻译:执行不连续函数在当今许多最先进的部分方程解析器中发生。 但是,在有限的元素方法中,这造成了一个固有的困难:当整合函数时,如果该元素内部不连续掉的功能是低等级多面体,不易扩展至更高等级多面体体,并涵盖一系列有限的地理偏差,则可以使用高效的二次规则。近年来,已经发展了解决这一问题的许多方法。其中最优和最能用的方法之一是等效的多面体技术。这种方法用一个多面体取代不连续函数,允许在整个域内进行整合,而不是在复杂的子体内进行整合。虽然消除与不连续函数整合有关的问题,但相应的多面体种种性策略也有其问题。精确的子体系整合需要一种在增加多面度和几度方面测量度时迅速增长的机械,将其应用范围限制在较低等级的多面体系中。当前的工作消除了这个问题。我们提供了精确的直方形的直方形三角体的直径直方方形结构,我们提供了精确的直方形的直径直径直方方形的直方方方方方程式的直方方方程式的直方程式的直方程式的直方程式结构结构结构结构结构结构结构结构,我们提供精确的直方形的直方形的直方形的直方形的直方体的直方形的直方体的直方体的直方形的平面的平面的平面的平面的平面的平面的平面结构平面图。