Saliency methods compute heat maps that highlight portions of an input that were most {\em important} for the label assigned to it by a deep net. Evaluations of saliency methods convert this heat map into a new {\em masked input} by retaining the $k$ highest-ranked pixels of the original input and replacing the rest with \textquotedblleft uninformative\textquotedblright\ pixels, and checking if the net's output is mostly unchanged. This is usually seen as an {\em explanation} of the output, but the current paper highlights reasons why this inference of causality may be suspect. Inspired by logic concepts of {\em completeness \& soundness}, it observes that the above type of evaluation focuses on completeness of the explanation, but ignores soundness. New evaluation metrics are introduced to capture both notions, while staying in an {\em intrinsic} framework -- i.e., using the dataset and the net, but no separately trained nets, human evaluations, etc. A simple saliency method is described that matches or outperforms prior methods in the evaluations. Experiments also suggest new intrinsic justifications, based on soundness, for popular heuristic tricks such as TV regularization and upsampling.
翻译:Saliency 方法计算热量图, 以显示由深网分配的标签中最重要的输入部分。 对显著方法的评估, 将热量图转换成一个新的 ~em 掩码输入 }, 保留原始输入中最高等级的美元像素, 并用\ textblleft uninfincialcolation\ textcolentblight\ pixels 来取代其余的像素, 并检查网络输出是否基本没有变化。 这通常被视为对输出的 ~em 解释, 但当前文件强调了这种因果关系的推论可能值得怀疑的原因 。 受到 ~ em compility 逻辑概念的启发, 将热量图转换为一个新的 ; 它观察到, 上述评价类型侧重于解释的完整性, 但却忽略了正确性 。 引入新的评价指标来捕捉这两个概念, 同时保持 ~ 内在框架 - e., 使用数据集和 网络, 但没有单独训练的网, 人的评价等等 。 简单突出的方法被描述为匹配或超越了之前在大众评估中所使用的方法 。 。