The stability and convergence analysis of high-order numerical approximations for the one- and two-dimensional nonlocal wave equations on unbounded spatial domains are considered. We first use the quadrature-based finite difference schemes to discretize the spatially nonlocal operator, and apply the explicit difference scheme to approximate the temporal derivative to achieve a fully discrete infinity system. After that, we construct the Dirichlet-to-Neumann (DtN)-type absorbing boundary conditions (ABCs) to reduce the infinite discrete system into a finite discrete system. To do so, we first adopt the idea in [Du, Zhang and Zheng, \emph{Commun. Comput. Phys.}, 24(4):1049--1072, 2018 and Du, Han, Zhang and Zheng, \emph{SIAM J. Sci. Comp.}, 40(3):A1430--A1445, 2018] to derive the Dirichlet-to-Dirichlet (DtD)-type mappings for one- and two-dimensional cases, respectively. We then use the discrete nonlocal Green's first identity to achieve the discrete DtN-type mappings from the DtD-type mappings. The resulting DtN-type mappings make it possible to perform the stability and convergence analysis of the reduced problem. Numerical experiments are provided to demonstrate the accuracy and effectiveness of the proposed approach.
翻译:对无限制空间域的一维和二维非本地波方程式的高度定序数字近似值的稳定性和趋同性分析进行了考虑。我们首先使用基于四面形的有限差异办法将空间上的非本地操作器分解,并应用明确的差别办法将时间衍生物近似于完全离散的无限系统。之后,我们建造了Drichlet-to-Neumann(DtN)类型的吸收边界条件(ABC),将无限离散系统缩小为有限的离散系统。为此,我们首先在[Du,Zhang和Zheng,\emph{Commonun.},24(4):1049-1072,2018和Du,Han,Zhang和Zheng,\emph{SIAM J.Sci.},40(3):A1430-A1445,2018]中采用了这种想法,将Drichlet-drichlet (D) 和Dt-typeal-dal-dality 映射法分别用于绿色和绿色类型D-结果的D型解剖面的不测图,我们分别用于D型解解成的D-d-d-d-d-d-d-d-dal-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-drogalgalgalgalgalisisalisalgalgalisalisals 的解到D-dalisaldaldaldalgalgaldalisalisalisalisalisals 的模拟的解的模拟的解算的解算法。