The \emph{Square Colouring} of a graph $G$ refers to colouring of vertices of a graph such that any two distinct vertices which are at distance at most two receive different colours. In this paper, we initiate the study of a related colouring problem called the \emph{subset square colouring} of graphs. Broadly, the subset square colouring of a graph studies the square colouring of a dominating set of a graph using $q$ colours. Here, the aim is to optimize the number of colours used. This also generalizes the well-studied Efficient Dominating Set problem. We show that the q-Subset Square Colouring problem is NP-hard for all values of $q$ even on bipartite graphs and chordal graphs. We further study the parameterized complexity of this problem when parameterized by a number of structural parameters. We further show bounds on the number of colours needed to subset square colour some graph classes.
翻译:$G$ 的图形 \ emph{ subset 方色 } 指的是图形的顶点的颜色颜色, 使在最远的两个相距最远的两个截然不同的顶点都得到不同的颜色。 在本文中, 我们开始研究一个相关的颜色问题, 叫做 emph{ subset 方色 。 广义而言, 图表的子方色, 研究用 $q 的颜色来标定一个图形的顶点的正色 。 这里, 目的是优化使用过的颜色数量。 这也概括了 得到充分研究的高效支配设置问题 。 我们显示, q- Subset 方位颜色问题对于所有值都是 $Qq$ 的, 甚至在双方形图形和 chordal 图形上都是坚固的 。 我们进一步研究按多个结构参数参数参数参数来标定的这个问题的参数复杂性。 我们进一步显示某些图形类的颜色的界限 。</s>