We define new graph parameters, called flip-width, that generalize treewidth, degeneracy, and generalized coloring numbers for sparse graphs, and clique-width and twin-width for dense graphs. The flip-width parameters are defined using variants of the Cops and Robber game, in which the robber has speed bounded by a fixed constant $r\in\mathbb N\cup\{\infty\}$, and the cops perform flips (or perturbations) of the considered graph. We then propose a new notion of tameness of a graph class, called bounded flip-width, which is a dense counterpart of classes of bounded expansion of Ne\v{s}etril and Ossona de Mendez, and includes classes of bounded twin-width of Bonnet, Kim, Thomass{\'e}, and Watrigant. This unifies Sparsity Theory and Twin-width Theory, providing a common language for studying the central notions of the two theories, such as weak coloring numbers and twin-width -- corresponding to winning strategies of one player -- or dense shallow minors, rich divisions, or well-linked sets, corresponding to winning strategies of the other player. We prove that boundedness of flip-width is preserved by first-order interpretations, or transductions, generalizing previous results concerning classes of bounded expansion and bounded twin-width. We provide an algorithm approximating the flip-width of a given graph, which runs in slicewise polynomial time (XP) in the size of the graph. Finally, we propose a more general notion of tameness, called almost bounded flip-width, which is a dense counterpart of nowhere dense classes. We conjecture, and provide evidence, that classes with almost bounded flip-width coincide with monadically dependent (or monadically NIP) classes, introduced by Shelah in model theory. We also provide evidence that classes of almost bounded flip-width characterise the hereditary graph classes for which the model-checking problem is fixed-parameter tractable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
63+阅读 · 2021年11月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员