One-shot talking head generation produces lip-sync talking heads based on arbitrary audio and one source face. To guarantee the naturalness and realness, recent methods propose to achieve free pose control instead of simply editing mouth areas. However, existing methods do not preserve accurate identity of source face when generating head motions. To solve the identity mismatch problem and achieve high-quality free pose control, we present One-shot Pose-controllable Talking head generation network (OPT). Specifically, the Audio Feature Disentanglement Module separates content features from audios, eliminating the influence of speaker-specific information contained in arbitrary driving audios. Later, the mouth expression feature is extracted from the content feature and source face, during which the landmark loss is designed to enhance the accuracy of facial structure and identity preserving quality. Finally, to achieve free pose control, controllable head pose features from reference videos are fed into the Video Generator along with the expression feature and source face to generate new talking heads. Extensive quantitative and qualitative experimental results verify that OPT generates high-quality pose-controllable talking heads with no identity mismatch problem, outperforming previous SOTA methods.


翻译:为保证自然和真实性,最近的方法建议实现自由自制控制,而不是简单地编辑口腔区域。然而,现有方法在产生头部运动时并不保持源面的准确身份。为了解决身份错配问题并实现高质量的自由自制控制,我们展示了单发口音头生成网(OPT),具体地说,音频特征分解模块将内容特征与音频分离,消除任意驾驶声频中特定发言者信息的影响。后来,从内容特征和源面中提取了口语表达特征,在此期间,设计里程碑式损失是为了提高面部结构和身份保护质量的准确性。最后,为了实现自由自制控制,参考视频中的可控头部布局特征与表达特征和源面一起被注入视频发电机,以产生新的语音头部。广泛的定量和定性实验结果证实,巴勒莫制造出高质量、可控制面容、没有身份错配错问题的语音头部,比以前SOTA方法要好。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员