Generating text-editable and pose-controllable character videos have an imperious demand in creating various digital human. Nevertheless, this task has been restricted by the absence of a comprehensive dataset featuring paired video-pose captions and the generative prior models for videos. In this work, we design a novel two-stage training scheme that can utilize easily obtained datasets (i.e.,image pose pair and pose-free video) and the pre-trained text-to-image (T2I) model to obtain the pose-controllable character videos. Specifically, in the first stage, only the keypoint-image pairs are used only for a controllable text-to-image generation. We learn a zero-initialized convolu- tional encoder to encode the pose information. In the second stage, we finetune the motion of the above network via a pose-free video dataset by adding the learnable temporal self-attention and reformed cross-frame self-attention blocks. Powered by our new designs, our method successfully generates continuously pose-controllable character videos while keeps the editing and concept composition ability of the pre-trained T2I model. The code and models will be made publicly available.
翻译:生成可以编辑文本和受姿态控制的角色视频对于创建各种数字人形象有着迫切需求。然而,这项任务一直受到缺乏包含视频-姿态字幕配对和视频生成先验模型的综合数据集的限制。在本文中,我们设计了一种新的两阶段训练方案,可以利用易于获得的数据集(即图像姿态对及无姿态视频)和预训练的文本到图像模型来获得可控制的角色视频。具体而言,在第一阶段,仅使用关键点 - 图像对进行可控文本到图像生成。我们在没有初始值的情况下学习一个卷积编码器来编码姿势信息。在第二阶段,我们通过添加可学习的时间自我注意和重构跨帧自我注意块,通过一个无姿态视频数据集微调上述网络的动作。凭借我们的新设计,我们的方法成功地生成了持续姿态可控的角色视频,同时保持了预先训练的文本到图像模型的编辑和概念组成能力。代码和模型将公开可用。