Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood flow beneath the human skull, is an essential task in various scientific and clinical settings. One of the primary optical techniques used is diffuse correlation spectroscopy (DCS), whose classical implementation uses a single or few single-photon detectors, resulting in poor spatial localization accuracy and relatively low temporal resolution. Here, we propose a technique termed Classifying Rapid decorrelation Events via Parallelized single photon dEtection (CREPE)}, a new form of DCS that can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle detection from a $32\times32$ pixel SPAD array. We evaluate our setup by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5mm tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve multi-mode fibers are used to collect scattered light from different positions on the surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation patterns by both a digital micromirror device (DMD) modulated at multi-kilo-hertz rates, as well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning algorithm that outperforms classic unsupervised learning methods, we demonstrate our approach can accurately detect and classify different transient decorrelation events (happening in 0.1-0.4s) underneath turbid scattering media, without any data labeling. This has the potential to be applied to noninvasively monitor deep tissue motion patterns, for example identifying normal or abnormal cerebral blood flow events, at multi-Hertz rates within a compact and static detection probe.
翻译:在各种科学和临床环境中,对空间差异化的装饰性事件,如人类头骨下的大脑血液流动等,进行快速非侵入性剖析,是各种科学和临床环境中的一项基本任务。所使用的一种主要光学技术是扩散相关光谱学(DCS),其古典实施使用单一或少数单一光谱检测器,导致空间本地化精确度差和相对较低的时间分辨率。在这里,我们提出一种技术,名为“通过平行的单光子光谱分散(CREPE)来分类快速装饰事件 ”, 这是一种新型的DCS,可以对在扰动量体内隐藏的不同装饰性运动进行检测和分类。 使用一种新型的DCS,可以对在扰动量中隐藏在320美元的分光谱分解器检测器进行检测,我们通过对5毫米组织式结构式的离心裁分辨数据模式进行分类,用快速解的动态分散的光,使用12种多色谱纤维,从组织表面的不同位置进行深度变压,用不动的深度变动的深度变压式变压,用不动的内变压式变压式变压式机机机机机机机的变动的机机机机算,将一个数字变动的变动的变换机变换机变换机变换机变速,用一个数字机变动的变动的变动的变动的变动的变压机机变的变压机变的变机机变。