Current object detectors are limited in vocabulary size due to the small scale of detection datasets. Image classifiers, on the other hand, reason about much larger vocabularies, as their datasets are larger and easier to collect. We propose Detic, which simply trains the classifiers of a detector on image classification data and thus expands the vocabulary of detectors to tens of thousands of concepts. Unlike prior work, Detic does not need complex assignment schemes to assign image labels to boxes based on model predictions, making it much easier to implement and compatible with a range of detection architectures and backbones. Our results show that Detic yields excellent detectors even for classes without box annotations. It outperforms prior work on both open-vocabulary and long-tail detection benchmarks. Detic provides a gain of 2.4 mAP for all classes and 8.3 mAP for novel classes on the open-vocabulary LVIS benchmark. On the standard LVIS benchmark, Detic obtains 41.7 mAP when evaluated on all classes, or only rare classes, hence closing the gap in performance for object categories with few samples. For the first time, we train a detector with all the twenty-one-thousand classes of the ImageNet dataset and show that it generalizes to new datasets without finetuning. Code is available at \url{https://github.com/facebookresearch/Detic}.
翻译:由于探测数据集规模小,当前天体探测器的词汇范围有限。 另一方面,图像分类者认为,随着数据集的扩大和收集起来的方便程度,更大型的词汇库的原因更大。 我们提议“大地测量”,它只是对探测器的分类者进行图像分类数据培训,从而将探测器的词汇范围扩大到数万个概念。 与以往的工作不同, 大地测量不需要复杂的分配办法, 将图像标签分配到基于模型预测的盒子上, 使其更容易执行和与一系列探测架构和主干网兼容。 我们的结果显示, 大地测量产生优秀的探测器, 即使是没有框注解的班级。 它比以前在开放蒸汽仪和长尾检测基准方面所做的工作要好得多。 大地测量为所有班提供了2.4 mAP的收益, 并且为开放蒸发式LVIS基准的新课程提供了8.3 mAP。 在标准LVIS基准上, Detic在评估所有类别时获得41.7 mAP, 或只有稀有的等级, 从而缩小了目标类别中少数样本的功能差距。 它比以前在开放- 数据库/高级数据库中, 我们用所有现有的数据检测和调整系统进行新的数据。