Estimation of density functions supported on general domains arises when the data is naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants, but as originally proposed is limited to densities on $\mathbb{R}^m$ and $\mathbb{R}_+^m$. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models, and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains, and empirically demonstrate the advantages of our method.
翻译:当数据自然限于真实空间的适当子集时,对一般域所支持的密度函数的估算就会出现。 这个问题由于通常难以调和的常数而变得复杂。 计分匹配为估算密度提供了强大的工具, 并用这种难以调和的常数来估算密度, 但如最初所提议, 仅限于$\mathbb{R ⁇ m$和$\mathb{R ⁇ m$。 在本文中, 我们提供了一种自然的得分匹配的概括化, 以适应在非常普通的域类中所支持的密度。 我们把框架应用到短小的图形和对称的互动模型, 为由此产生的估计器提供理论保障 。 我们还概括了最近提出的方法, 从捆绑到无约束域, 并用经验来展示我们方法的优点 。