斯坦福大学机器学习斯坦福大学机器学习第十课“应用机器学习的建议(Advice for applying machine learning)”学习笔记,本次课程主要包括7部分:
- Deciding what to try next(决定下一步该如何做)
- Evaluating a hypothesis(评估假设)
- Model selection and training/validation/test sets(模型选择和训练/验证/测试集)
- Diagnosing bias vs. variance(诊断偏差和方差)
- Regularization and bias/variance(正则化和偏差/方差)
- Learning curves(学习曲线)
- Deciding what to try next (revisited)(再次决定下一步该做什么)