The isomorphism problem for graphs (GI) and the isomorphism problem for groups (GrISO) have been studied extensively by researchers. The current best algorithms for both these problems run in quasipolynomial time. In this paper, we study the isomorphism problem of graphs that are defined in terms of groups, namely power graphs, directed power graphs, and enhanced power graphs. It is not enough to check the isomorphism of the underlying groups to solve the isomorphism problem of such graphs as the power graphs (or the directed power graphs or the enhanced power graphs) of two nonisomorphic groups can be isomorphic. Nevertheless, it is interesting to ask if the underlying group structure can be exploited to design better isomorphism algorithms for these graphs. We design polynomial time algorithms for the isomorphism problems for the power graphs, the directed power graphs and the enhanced power graphs arising from finite nilpotent groups. In contrast, no polynomial time algorithm is known for the group isomorphism problem, even for nilpotent groups of class 2. We note that our algorithm does not require the underlying groups of the input graphs to be given. The isomorphism problems of power graphs and enhanced power graphs are solved by first computing the directed power graphs from the input graphs. The problem of efficiently computing the directed power graph from the power graph or the enhanced power graph is due to Cameron [IJGT'22]. Therefore, we give a solution to Cameron's question.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2021年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
0+阅读 · 2023年7月18日
Arxiv
0+阅读 · 2023年7月16日
Arxiv
0+阅读 · 2023年7月15日
Arxiv
0+阅读 · 2023年7月14日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员