We consider a generalized poset sorting problem (GPS), in which we are given a query graph $G = (V, E)$ and an unknown poset $\mathcal{P}(V, \prec)$ that is defined on the same vertex set $V$, and the goal is to make as few queries as possible to edges in $G$ in order to fully recover $\mathcal{P}$, where each query $(u, v)$ returns the relation between $u, v$, i.e., $u \prec v$, $v \prec u$ or $u \not \sim v$. This generalizes both the poset sorting problem [Faigle et al., SICOMP 88] and the generalized sorting problem [Huang et al., FOCS 11]. We give algorithms with $\tilde{O}(n\cdot \mathrm{poly}(k))$ query complexity when $G$ is a complete bipartite graph or $G$ is stochastic under the \ER model, where $k$ is the \emph{width} of the poset, and these generalize [Daskalakis et al., SICOMP 11] which only studies complete graph $G$. Both results are based on a unified framework that reduces the poset sorting to partitioning the vertices with respect to a given pivot element, which may be of independent interest. Our study of GPS also leads to a new $\tilde{O}(n^{1 - 1 / (2W)})$ competitive ratio for the so-called weighted generalized sorting problem where $W$ is the number of distinct weights in the query graph. This problem was considered as an open question in [Charikar et al., JCSS 02], and our result makes important progress as it yields the first nontrivial sublinear ratio for general weighted query graphs (for any bounded $W$). We obtain this via an $\tilde{O}(nk + n^{1.5})$ query complexity algorithm for the case where every edge in $G$ is guaranteed to be comparable in the poset, which generalizes a $\tilde{O}(n^{1.5})$ bound for generalized sorting [Huang et al., FOCS 11].
翻译:暂无翻译