Understanding natural symmetries is key to making sense of our complex and ever-changing world. Recent work has shown that neural networks can learn such symmetries directly from data using Hamiltonian Neural Networks (HNNs). But HNNs struggle when trained on datasets where energy is not conserved. In this paper, we ask whether it is possible to identify and decompose conservative and dissipative dynamics simultaneously. We propose Dissipative Hamiltonian Neural Networks (D-HNNs), which parameterize both a Hamiltonian and a Rayleigh dissipation function. Taken together, they represent an implicit Helmholtz decomposition which can separate dissipative effects such as friction from symmetries such as conservation of energy. We train our model to decompose a damped mass-spring system into its friction and inertial terms and then show that this decomposition can be used to predict dynamics for unseen friction coefficients. Then we apply our model to real world data including a large, noisy ocean current dataset where decomposing the velocity field yields useful scientific insights.
翻译:理解自然的对称性是理解我们复杂和不断变化的世界的关键。 最近的工作表明,神经网络可以直接从使用汉密尔顿神经网络(HNN)的数据中学习这种对称性。 但是,当在没有节能的情况下对数据集进行培训时,HNNS会挣扎。 在本文中,我们询问是否有可能同时识别和分解保守和消散的动态。 我们提议分解汉密尔顿神经网络(D-HNNS), 它将汉密尔顿人和雷利消散功能作为参数。 合并起来, 它们代表着一种隐含的Helmholtz脱腐化作用, 可以分离出诸如与节能等对称性模型的摩擦等分解性效应。 我们训练我们的模型, 将悬浮弥漫的大规模循环系统分解成其摩擦和惯性术语, 然后显示这种分解性可以用来预测不可测的摩擦系数的动态。 然后我们将我们的模型应用到真实的世界数据中, 包括一个大型的、噪音的海洋流数据, 从而解速度领域产生有用的科学洞察。