In this paper we present a deep learning method to predict the temporal evolution of dissipative dynamic systems. We propose using both geometric and thermodynamic inductive biases to improve accuracy and generalization of the resulting integration scheme. The first is achieved with Graph Neural Networks, which induces a non-Euclidean geometrical prior with permutation invariant node and edge update functions. The second bias is forced by learning the GENERIC structure of the problem, an extension of the Hamiltonian formalism, to model more general non-conservative dynamics. Several examples are provided in both Eulerian and Lagrangian description in the context of fluid and solid mechanics respectively, achieving relative mean errors of less than 3% in all the tested examples. Two ablation studies are provided based on recent works in both physics-informed and geometric deep learning.
翻译:在本文中,我们提出了一个深刻的学习方法来预测消散动态系统的时间演变。我们建议使用几何和热动力感应偏差来提高由此形成的集成计划的准确性和概括性。第一个是借助图形神经网络实现的,它引出一个非欧化的几何前端,有变异节点和边缘更新功能。第二个偏差是因学习这一问题的GENNERIC结构而被迫的,这是汉密尔顿式形式主义的延伸,可以模拟更普遍的非保守性动态。在流力和固力机械方面,Eulelirian和Lagrangian的描述分别提供了几个例子,在所有测试的示例中,相对平均差差不到3%。根据最近在物理学学和测深地球学方面的研究,提供了两个偏差研究。