项目名称: 随机耦合振子的逼近
项目编号: No.11426175
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 吕伟
作者单位: 西安石油大学
项目金额: 3万元
中文摘要: 耦合振动是在工程和科学中非常重要的现象,无论是宏观,微观还是宇观问题中都会出现耦合的振子。对这些实际的振动,由于外界不确定性因素,或者热涨落的影响,在我们建立模型时,必须考虑噪声这一重要因素。本项目主要研究几类随机耦合振子的解的渐近行为以及在耦合很大时的渐近性质。研究一阶线性随机耦合振子和二阶线性随机耦合振子的渐近性质,以及它们在耦合强度足够大时的性质。进一步研究一阶非线性和二阶非线性随机耦合振子的渐近性质。针对一般的噪声,分别在Lipschitz 非线性和局部Lipschitz 非线性两种情形下,研究系统的长时间行为的一维逼近,并且在周期性假设下,证明旋转数的存在性。
中文关键词: 白噪声;随机动力系统;随机耦合振子;随机不变流形;
英文摘要: Coupled oscillation is popular and important in science and engineering, it appears in macroscopic, microscopic and cosmoscopic problems. In the physical oscillation, uncertainty or heat fluctuation always exists, noise should be taken into account to model the oscillation. This thesis mainly concerns stochastic coupled oscillators and studies the behavior and the approximation of the solution when the coupling is strong. we study firrst order linear stochastic coupled oscillators and second order linear stochastic coupled oscillators. The asymptotic behavior of the solution and the approximation with strong coupling are derived. we consider first order nonlinear stochastic coupled oscillators and second order nonlinear stochastic coupled oscillators. In the case of general noise, under the assumptions of Lipschitz and locally Lipschitz nonlinearity,by direct estimations of solutions respectively. Existence of rotation number is derived under the periodic assumption.
英文关键词: White noise;Random dynamical systems;Stochastic coupled oscillators;Random invariant manifold;