We study the budgeted versions of the well known matching and matroid intersection problems. While both problems admit a polynomial-time approximation scheme (PTAS) [Berger et al. (Math. Programming, 2011), Chekuri, Vondrak and Zenklusen (SODA 2011)], it has been an intriguing open question whether these problems admit a fully PTAS (FPTAS), or even an efficient PTAS (EPTAS). In this paper we answer the second part of this question affirmatively, by presenting an EPTAS for budgeted matching and budgeted matroid intersection. A main component of our scheme is a novel construction of representative sets for desired solutions, whose cardinality depends only on $\varepsilon$, the accuracy parameter. Thus, enumerating over solutions within a representative set leads to an EPTAS. This crucially distinguishes our algorithms from previous approaches, which rely on exhaustive enumeration over the solution set. Our ideas for constructing representative sets may find use in tackling other budgeted optimization problems, and are thus of independent interest.


翻译:我们研究了众所周知的匹配和机器人交叉问题的预算版本。虽然这两个问题都承认了多纪念时间近似计划(PTAS)[Berger等人(Math.Plantic,2011年)、Chekuri、Vondrak和Zenklusen(SODA,2011年 ),但一个令人感兴趣的问题是,这些问题是否完全承认PTAS(FTAS),甚至一个有效的PTAS(EPTAS ) 。在本文中,我们肯定地回答了这个问题的第二部分,提出了用于编入预算的匹配和预算的配方机器人交叉点的EPTAS。我们计划的一个主要部分是新颖地构建了有代表性的解决方案,其基本性仅依赖于美元和瓦雷普斯隆,即精确参数。因此,在代表设定的解决方案中列举出解决方案可以导致EPTAS(EPTAS),这使我们的算法与以前的方法区别非常关键,因为以往的方法依赖于对套解决办法的详尽的查点。我们构建代表组的想法可能用于解决其他编入预算的优化问题,因此具有独立的兴趣。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员