(Stochastic) bilevel optimization is a frequently encountered problem in machine learning with a wide range of applications such as meta-learning, hyper-parameter optimization, and reinforcement learning. Most of the existing studies on this problem only focused on analyzing the convergence or improving the convergence rate, while little effort has been devoted to understanding its generalization behaviors. In this paper, we conduct a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization problem. We first establish a fundamental connection between algorithmic stability and generalization error in different forms and give a high probability generalization bound which improves the previous best one from $\bigO(\sqrt{n})$ to $\bigO(\log n)$, where $n$ is the sample size. We then provide the first stability bounds for the general case where both inner and outer level parameters are subject to continuous update, while existing work allows only the outer level parameter to be updated. Our analysis can be applied in various standard settings such as strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analysis for the NC-NC setting can also be extended to a particular nonconvex-strongly-convex (NC-SC) setting that is commonly encountered in practice. Finally, we corroborate our theoretical analysis and demonstrate how iterations can affect the generalization error by experiments on meta-learning and hyper-parameter optimization.


翻译:双层优化是机器学习中经常遇到的一个问题,它涉及多种应用,如元学习、超参数优化和强化学习等。关于该问题的现有研究大多只侧重于分析趋同率或提高趋同率,而很少努力去了解其概括性行为。在本文中,我们对双层优化问题的第一阶(基于等级的)方法的概括性进行透彻分析,同时只允许更新外部参数。我们首先在不同形式的算法稳定性和一般化错误之间建立了基本联系,并给出了高概率的概括性约束,将美元(SC-scrt{n})到美元(B$BigO(ggn)n),美元(gonn),美元(g),美元(gg),美元(g),(g),(g),(g) 美元,(g) 美元,(g) 美元,(g) 美元,(g) 美元,(g) 美元,(g) 美元,(con) 和nex-nex-nex-nex-nex-colalcalcal-cal-cal-cal-deal-cal-cal-creal-deal-creal-cal-cal-creal-dealx,(我们内部-nex-nex-c-cal-cal-cal-cal-cx-cal-c-c-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-l-c-cal-cal-c-c-l-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-l-l-l) la) laisal-l-l) 和不可以对常规-c-cl) 和n-cl) 和不、C-

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月7日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员