In this paper a variant of nonlinear exponential Euler scheme is proposed for solving nonlinear heat conduction problems. The method is based on nonlinear iterations where at each iteration a linear initial-value problem has to be solved. We compare this method to the backward Euler method combined with nonlinear iterations. For both methods we show monotonicity and boundedness of the solutions and give sufficient conditions for convergence of the nonlinear iterations. Numerical tests are presented to examine performance of the two schemes. The presented exponential Euler scheme is implemented based on restarted Krylov subspace methods and, hence, is essentially explicit (involves only matrix-vector products).
翻译:在本文中,为解决非线性热导导问题提出了非线性指数Euler办法的变体。 方法基于非线性迭代, 每次迭代必须解决线性初始值问题。 我们比较了这种方法与后向的Euler方法以及非线性迭代。 对于这两种方法,我们都显示了解决方案的单一性和非线性迭代的界限性,并为非线性迭代的趋同提供了充分的条件。 提出了数字性测试,以检查这两个办法的性能。 提出的指数性Euler办法是根据重新启动的Krylov子空间方法实施的,因此基本上很明确( 进化仅是矩阵- 矢量产品)。