In this article, we propose a general nonlinear sufficient dimension reduction (SDR) framework when both the predictor and response lie in some general metric spaces. We construct reproducing kernel Hilbert spaces whose kernels are fully determined by the distance functions of the metric spaces, then leverage the inherent structures of these spaces to define a nonlinear SDR framework. We adapt the classical sliced inverse regression of \citet{Li:1991} within this framework for the metric space data. We build the estimator based on the corresponding linear operators, and show it recovers the regression information unbiasedly. We derive the estimator at both the operator level and under a coordinate system, and also establish its convergence rate. We illustrate the proposed method with both synthetic and real datasets exhibiting non-Euclidean geometry.
翻译:在本文中,当预测器和反应都存在于一些一般的计量空间时,我们建议一个非线性足够尺寸减少(SDR)框架。我们建造了再生的内核Hilbert空间,其内核完全由测量空间的距离功能决定,然后利用这些空间的固有结构来定义非线性特别提款权框架。我们在这个框架内调整了用于计量空间数据的典型的截片反向回归。我们根据相应的线性操作员建造了估计数据,并显示它不偏袒地恢复了回归信息。我们从操作员一级和坐标系统下提取了估计数据,并确定了其趋同率。我们用显示非欧立德几何的合成数据元和真实数据元组来说明拟议的方法。