We introduce a generalised additive model for location, scale, and shape (GAMLSS) next of kin aiming at distribution-free and parsimonious regression modelling for arbitrary outcomes. We replace the strict parametric distribution formulating such a model by a transformation function, which in turn is estimated from data. Doing so not only makes the model distribution-free but also allows to limit the number of linear or smooth model terms to a pair of location-scale predictor functions. We derive the likelihood for continuous, discrete, and randomly censored observations, along with corresponding score functions. A plethora of existing algorithms is leveraged for model estimation, including constraint maximum-likelihood, the original GAMLSS algorithm, and transformation trees. Parameter interpretability in the resulting models is closely connected to model selection. We propose the application of a novel best subset selection procedure to achieve especially simple ways of interpretation. All techniques are motivated and illustrated by a collection of applications from different domains, including crossing and partial proportional hazards, complex count regression, nonlinear ordinal regression, growth curves, and receiver operating characteristics. All analyses are reproducible with the help of the "tram" add-on package to the R system for statistical computing and graphics.
翻译:我们为位置、比例和形状(GAMLSS)近亲引入了一个通用的添加模型(GAMLSS),目的是为任意结果建立无分布分布和偏差的回归模型。我们用一个转换函数来取代严格参数分布模式,这种模型的编制方法是严格的参数分布法,这种转换功能又根据数据进行估计。这样做不仅使模型没有分布,而且允许将线性或光滑模型条款的数量限制在一对位置尺度预测函数中。我们从中得出连续、分散和随机审查的观测以及相应的评分函数的可能性。利用现有的多种算法用于模型估计,包括限制最大相似性、原GAMLSS算法和变形树。由此形成的模型中的参数可解释性与模型选择密切相连。我们提议采用新的最佳分类选择程序来实现特别简单的解释方式。所有技术都是通过从不同领域收集的应用,包括交叉和部分成比例的危害、复杂的计数回归、非线性或底线性回归、增长曲线和接收器操作特性。所有分析都可以通过“tramimal-comnal ad-al-commainal ” 来帮助将“traomical-commogrational-commal-commalling to to the commational and the the sal