We analyze the performance of a variant of Newton method with quadratic regularization for solving composite convex minimization problems. At each step of our method, we choose regularization parameter proportional to a certain power of the gradient norm at the current point. We introduce a family of problem classes characterized by H\"older continuity of either the second or third derivative. Then we present the method with a simple adaptive search procedure allowing an automatic adjustment to the problem class with the best global complexity bounds, without knowing specific parameters of the problem. In particular, for the class of functions with Lipschitz continuous third derivative, we get the global $O(1/k^3)$ rate, which was previously attributed to third-order tensor methods. When the objective function is uniformly convex, we justify an automatic acceleration of our scheme, resulting in a faster global rate and local superlinear convergence. The switching between the different rates (sublinear, linear, and superlinear) is automatic. Again, for that, no a priori knowledge of parameters is needed.
翻译:我们分析牛顿法的变种的性能,用四级正规化来解决复合二次曲线最小化问题。 在方法的每一步, 我们选择与当前点的梯度规范某种功率成比例的正统化参数。 我们引入了一组问题类别, 其特征为 H\ “ 老者” 连续第二或第三衍生物。 然后我们用一个简单的适应性搜索程序来显示该方法, 允许以全球最复杂界限自动调整问题类别, 而不了解问题的具体参数。 特别是对于Lipschitz连续第三衍生物的功能类别, 我们得到全球的 $O( 1/ k ⁇ 3), 其先前归因于第三阶梯度 方法。 当目标函数一致时, 我们有理由自动加速我们的计划, 导致更快的全球速度和本地超线性趋同。 不同的比率( 子线、 线性与超级线性) 之间的转换是自动的。 因此, 不需要事先知道参数 。