The aim of gaze redirection is to manipulate the gaze in an image to the desired direction. However, existing methods are inadequate in generating perceptually reasonable images. Advancement in generative adversarial networks has shown excellent results in generating photo-realistic images. Though, they still lack the ability to provide finer control over different image attributes. To enable such fine-tuned control, one needs to obtain ground truth annotations for the training data which can be very expensive. In this paper, we propose an unsupervised domain adaptation framework, called CUDA-GR, that learns to disentangle gaze representations from the labeled source domain and transfers them to an unlabeled target domain. Our method enables fine-grained control over gaze directions while preserving the appearance information of the person. We show that the generated image-labels pairs in the target domain are effective in knowledge transfer and can boost the performance of the downstream tasks. Extensive experiments on the benchmarking datasets show that the proposed method can outperform state-of-the-art techniques in both quantitative and qualitative evaluation.


翻译:调整视线的目的是将视线在图像中操纵到理想的方向。 但是, 现有的方法不足以生成感知合理的图像。 基因对抗网络的进步在生成照片现实化图像方面显示了极好的结果。 虽然它们仍然缺乏对不同图像属性提供更精细控制的能力。 为了能够进行这种微调控制, 人们需要为培训数据获得地面真相说明, 培训数据可能非常昂贵。 在本文件中, 我们提议了一个不受监督的域域适应框架, 称为 CUDA- GR, 以学习将视像显示与标签源域脱钩, 并将它们传输到一个未标记的目标域。 我们的方法使得在保存个人外观信息的同时能够对视视方向进行精细的控制。 我们显示目标域生成的图像标签配对在知识转移方面是有效的, 可以提高下游任务的业绩。 在基准数据集上进行的广泛实验表明, 拟议的方法可以在定量和定性评估中超越最新技术。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2021年1月7日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员