Density-based clustering algorithms are widely used for discovering clusters in pattern recognition and machine learning since they can deal with non-hyperspherical clusters and are robustness to handle outliers. However, the runtime of density-based algorithms are heavily dominated by finding fixed-radius near neighbors and calculating the density, which is time-consuming. Meanwhile, the traditional acceleration methods using indexing technique such as KD tree is not effective in processing high-dimensional data. In this paper, we propose a fast region query algorithm named fast principal component analysis pruning (called FPCAP) with the help of the fast principal component analysis technique in conjunction with geometric information provided by principal attributes of the data, which can process high-dimensional data and be easily applied to density-based methods to prune unnecessary distance calculations when finding neighbors and estimating densities. As an application in density-based clustering methods, FPCAP method was combined with the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. And then, an improved DBSCAN (called IDBSCAN) is obtained, which preserves the advantage of DBSCAN and meanwhile, greatly reduces the computation of redundant distances. Experiments on seven benchmark datasets demonstrate that the proposed algorithm improves the computational efficiency significantly.


翻译:在模式识别和机器学习中,基于密度的集群算法被广泛用于在模式识别和机器学习中发现集群,因为这些算法可以处理非同步的群集,并且具有处理外部线的稳健性;然而,基于密度算法的运行时间主要取决于在邻居附近找到固定的半径线和计算密度,这是耗时的。与此同时,使用KD树等指数化技术的传统加速法在处理高维数据方面是无效的。在本文中,我们提议采用快速区域查询算法,称为快速主元件分析运行(称为FPCAP),在快速主件分析技术的帮助下,结合数据主要属性提供的几何学信息,这些数据可以处理高维数据,并很容易地应用于基于密度的计算方法,以在寻找邻居和估计密度时进行不必要的距离计算。作为基于密度的集群方法的应用,FCAPCA方法与基于密度的空间组合法的Nise(DBSCAN)算法(称为IDBSCAN)计算法(称为DBSCAN)的快速主控件分析技术。然后,得到改进了DBSCAN的快速主控件分析技术,这可以大大地保持DBBSAN的计算方法的优势,同时显示DBBCAN的升级。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员