To enable robotic weed control, we develop algorithms to detect nutsedge weed from bermudagrass turf. Due to the similarity between the weed and the background turf, manual data labeling is expensive and error-prone. Consequently, directly applying deep learning methods for object detection cannot generate satisfactory results. Building on an instance detection approach (i.e. Mask R-CNN), we combine synthetic data with raw data to train the network. We propose an algorithm to generate high fidelity synthetic data, adopting different levels of annotations to reduce labeling cost. Moreover, we construct a nutsedge skeleton-based probabilistic map (NSPM) as the neural network input to reduce the reliance on pixel-wise precise labeling. We also modify loss function from cross entropy to Kullback-Leibler divergence which accommodates uncertainty in the labeling process. We implement the proposed algorithm and compare it with both Faster R-CNN and Mask R-CNN. The results show that our design can effectively overcome the impact of imprecise and insufficient training sample issues and significantly outperform the Faster R-CNN counterpart with a false negative rate of only 0.4%. In particular, our approach also reduces labeling time by 95% while achieving better performance if comparing with the original Mask R-CNN approach.
翻译:为了实现机器人杂草控制,我们开发了用于检测来自护堤草地盘的坚果杂草的算法。由于杂草与背景草皮之间的相似性,人工数据标签成本昂贵且容易出错。因此,直接应用深入的物体探测学习方法无法产生令人满意的结果。在实例检测方法(即Mask R-CNN)的基础上,我们将合成数据与原始数据相结合,以培训网络。我们提出了一个生成高忠诚性合成数据的算法,采用不同层次的注释来降低标签成本。此外,我们建造了一个基于坚固骨骼的概率图(NSPM)作为神经网络输入,以减少对比像素准确标签的依赖。我们还将损失函数从交叉诱变到Kullback-Lebearr的差异,以适应标签过程中的不确定性。我们实施拟议的算法,并与更快的R-CNN和Mask R-CNN进行对比。结果显示,我们的设计可以有效克服不精确和不充分的培训样本问题的影响,并大大超越了以坚固的R-CNN对准的 RCN对等的比,同时以更好的原始速度降低原值,只有0.4 %的汇率。