In this paper, we examine behavior in a voluntary resource sharing game that incorporates endogenous network formation; an incentive problem that is increasingly common in contemporary digital economies. Using a laboratory experimental implementation of repeated play in this information-rich decision setting, we examine the effects of a simple reputation feedback system on patterns of linking and contribution decisions. Reduced-form estimates find significant effects of the information treatment on a number of key outcomes such as efficiency, complementarity, and decentralization. To further understand the driving causes of these observed changes in behavior, we develop and estimate a discrete-choice framework, using computationally efficient panel methods to identify the structure of social preferences in this setting. We find that the information treatment focuses reciprocity, and helps players coordinate to reach more efficient outcomes.
翻译:在本文中,我们审视了自愿资源共享游戏中的行为,该游戏包括了内生网络的形成;这是一个在当代数字经济中日益常见的激励问题。我们通过实验性实验性地在信息丰富的决策环境中反复玩耍,我们研究了简单的名声反馈系统对联系和贡献决定模式的影响。减少的表格估计发现信息处理对效率、互补性和权力下放等若干关键结果产生了重大影响。为了进一步理解这些观察到的行为变化的驱动因素,我们制定并估计了一个独立的选择框架,使用计算高效的小组方法来确定这一环境中的社会偏好结构。我们发现信息处理侧重于对等性,帮助参与者协调以达到更有效的结果。