Inspired by recent advances in diffusion models, which are reminiscent of denoising autoencoders, we investigate whether they can acquire discriminative representations for classification via generative pre-training. This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners: by pre-training on unconditional image generation, DDAE has already learned strongly linear-separable representations at its intermediate layers without auxiliary encoders, thus making diffusion pre-training emerge as a general approach for self-supervised generative and discriminative learning. To verify this, we perform linear probe and fine-tuning evaluations on multi-class datasets. Our diffusion-based approach achieves 95.9% and 50.0% linear probe accuracies on CIFAR-10 and Tiny-ImageNet, respectively, and is comparable to masked autoencoders and contrastive learning for the first time. Additionally, transfer learning from ImageNet confirms DDAE's suitability for latent-space Vision Transformers, suggesting the potential for scaling DDAEs as unified foundation models.


翻译:受扩散模型的最新进展启发,本文研究它们是否可以通过生成式预训练获取判别性表示以进行分类。本文表明,扩散模型中的网络,即去噪扩散自编码器(DDAE),是统一的自监督学习器:通过在无条件图像生成上进行预训练,DDAE已经学会了中间层的极强的线性可分表示,而无需辅助编码器,从而使扩散预训练成为自监督生成式和判别式学习的通用方法。为验证这一点,我们在多类数据集上进行线性探针和微调评估。我们基于扩散的方法在CIFAR-10和Tiny-ImageNet上分别实现了95.9%和50.0%的线性探针准确率,与遮蔽自编码器和对比学习首次具有可比性。此外,来自ImageNet的转移学习证实了DDAE在潜在视觉变换器中的适用性,表明可以将DDAE扩展为统一的基础模型。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
专知会员服务
65+阅读 · 2021年7月25日
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
38+阅读 · 2021年5月16日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员