We present a mesh-free collocation scheme to discretize intrinsic surface differential operators over surface point clouds with given normal vectors. The method is based on Discretization-Corrected Particle Strength Exchange (DC-PSE), which generalizes finite difference methods to mesh-free point clouds and moving Lagrangian particles. The resulting Surface DC-PSE method is derived from an embedding theorem, but we analytically reduce the operator kernels along the surface normals, resulting in an embedding-free, purely surface-intrinsic computational scheme. We benchmark the scheme by discretizing the Laplace-Beltrami operator on a circle and a sphere, and present convergence results for both explicit and implicit solvers. We then showcase the algorithm on the problem of computing mean curvature of an ellipsoid and of the Stanford Bunny by evaluating the surface divergence of the normal vector field with the proposed Surface DC-PSE method.
翻译:我们提出了一个无网格的合用办法,用给定的正常矢量将表面云层的内在表面差分操作器分离出来,这种方法以分解校正的粒子强度交换(DC-PSE)为基础,该办法将有限差分方法概括为无网格点云和移动拉格朗吉亚粒子。由此形成的地表DC-PSE方法来自嵌入的定理器,但我们通过分析减少表面常态的操作器内核,从而形成一个无嵌入的纯表面内核计算方案。我们通过将 Laplace-Beltrami 操作器分解成圆圈和一个球体来对这个方案进行基准,并为显性或隐性求解码的求解器提供趋同结果。然后我们用拟议的表DC-PSE方法来评估普通矢量场表面的表面差分法,从而展示关于计算一个电子流体和斯坦福邦的平均值曲线问题的算算法。