We obtain new equitightness and $C([0,T];L^p(\mathbb{R}^N))$-convergence results for finite-difference approximations of generalized porous medium equations of the form $$ \partial_tu-\mathfrak{L}[\varphi(u)]=g\qquad\text{in $\mathbb{R}^N\times(0,T)$}, $$ where $\varphi:\mathbb{R}\to\mathbb{R}$ is continuous and nondecreasing, and $\mathfrak{L}$ is a local or nonlocal diffusion operator. Our results include slow diffusions, strongly degenerate Stefan problems, and fast diffusions above a critical exponent. These results improve the previous $C([0,T];L_{\text{loc}}^p(\mathbb{R}^N))$-convergence obtained in a series of papers on the topic by the authors. To have equitightness and global $L^p(\mathbb{R}^N)$-convergence, some additional restrictions on $\mathfrak{L}$ and $\varphi$ are needed. Most commonly used symmetric operators $\mathfrak{L}$ are still included: the Laplacian, fractional Laplacians, and other generators of symmetric L\'evy processes with some fractional moment. We also discuss extensions to nonlinear possibly strongly degenerate convection-diffusion equations.
翻译:我们获得了新的公平度和$C( [0,T];L}p(\ mathbb{R ⁇ N)) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) (美元) 新的公平度和美元(美元) 美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) ) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (