Approximation rates are analyzed for deep surrogates of maps between infinite-dimensional function spaces, arising e.g. as data-to-solution maps of linear and nonlinear partial differential equations. Specifically, we study approximation rates for Deep Neural Operator and Generalized Polynomial Chaos (gpc) Operator surrogates for nonlinear, holomorphic maps between infinite-dimensional, separable Hilbert spaces. Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems. Admissible representation systems comprise orthonormal bases, Riesz bases or suitable tight frames of the spaces under consideration. Algebraic expression rate bounds are established for both, deep neural and gpc operator surrogates acting in scales of separable Hilbert spaces containing domain and range of the map to be expressed, with finite Sobolev or Besov regularity. We illustrate the abstract concepts by expression rate bounds for the coefficient-to-solution map for a linear elliptic PDE on the torus.
翻译:将近似率分析为无限功能空间之间地图的深度代位率,例如线性和非线性部分方程的数据解析图。具体地说,我们研究深神经操作员和通用聚合混乱(gpc)操作员的近似率,非线性、无线性、可分离的Hilbert空间之间的全色图;假设功能空间的操作员和输出物由稳定、近距离代表系统进行对称。可允许代表系统包括正态基、Riesz基或所考虑空间的适当紧凑框架。为深神经操作员和通用多线性多孔混杂(gpc)操作员的近似率,在包含可分解的Hilbert空间范围内,以有限的Sobolev 或Besov 常规性来显示地图的域和范围。我们用直线性 Ellip PDE PDE的参数到溶解系数图的表达率约束来说明抽象概念。