We present SHRED, a method for 3D SHape REgion Decomposition. SHRED takes a 3D point cloud as input and uses learned local operations to produce a segmentation that approximates fine-grained part instances. We endow SHRED with three decomposition operations: splitting regions, fixing the boundaries between regions, and merging regions together. Modules are trained independently and locally, allowing SHRED to generate high-quality segmentations for categories not seen during training. We train and evaluate SHRED with fine-grained segmentations from PartNet; using its merge-threshold hyperparameter, we show that SHRED produces segmentations that better respect ground-truth annotations compared with baseline methods, at any desired decomposition granularity. Finally, we demonstrate that SHRED is useful for downstream applications, out-performing all baselines on zero-shot fine-grained part instance segmentation and few-shot fine-grained semantic segmentation when combined with methods that learn to label shape regions.
翻译:我们提出SHRED, 3D SHAPE REGIN RED 3D SHAPE REDAD 3D 3D 点云作为输入, 并使用当地有学识的分解来产生接近细微分解部分的分解。 我们通过三种分解作业将SSHRED 消灭: 分裂区域、 确定区域之间的界限、 将区域合并在一起。 模块是独立和当地培训的, 允许SSHRED 生成培训期间未见的类别高质量的分解。 我们用PartNet 的精细分解分解来训练和评估SSHRED ; 使用其合并高度的超参数, 我们显示SHRED 生成的分解析, 与基线方法相比, 在任何预期的分解颗粒度上, 都更尊重地面- 真相说明 。 最后, 我们证明SHRED 有助于下游应用, 超过零光细微分解部分的分解和几发精度精度的分解分解分解, 当结合学习形状区域标签的方法时, 。