The study of signatures of aging in terms of genomic biomarkers can be uniquely helpful in understanding the mechanisms of aging and developing models to accurately predict the age. Prior studies have employed gene expression and DNA methylation data aiming at accurate prediction of age. In this line, we propose a new framework for human age estimation using information from human dermal fibroblast gene expression data. First, we propose a new spatial representation as well as a data augmentation approach for gene expression data. Next in order to predict the age, we design an architecture of neural network and apply it to this new representation of the original and augmented data, as an ensemble classification approach. Our experimental results suggest the superiority of the proposed framework over state-of-the-art age estimation methods using DNA methylation and gene expression data.
翻译:从基因组生物标志学的角度研究老龄化的征兆,在理解老龄化机制和开发准确预测年龄的模型的机制方面,可以发挥独特的作用。先前的研究采用了基因表达和DNA甲基化数据,以准确预测年龄。在这方面,我们建议了一个新的人类年龄估计框架,使用人类皮肤纤维纤维化基因表达表达数据的信息。首先,我们提出了一个新的空间代表以及基因表达数据的数据增强方法。接下来,为了预测年龄,我们设计了一个神经网络结构,并将其应用到原始和扩充数据的新表述中,作为一种共同分类方法。我们的实验结果表明,拟议的框架优于使用DNA甲基化和基因表达数据的最新年龄估计方法。