The study of signatures of aging in terms of genomic biomarkers can be uniquely helpful in understanding the mechanisms of aging and developing models to accurately predict the age. Prior studies have employed gene expression and DNA methylation data aiming at accurate prediction of age. In this line, we propose a new framework for human age estimation using information from human dermal fibroblast gene expression data. First, we propose a new spatial representation as well as a data augmentation approach for gene expression data. Next in order to predict the age, we design an architecture of neural network and apply it to this new representation of the original and augmented data, as an ensemble classification approach. Our experimental results suggest the superiority of the proposed framework over state-of-the-art age estimation methods using DNA methylation and gene expression data.


翻译:从基因组生物标志学的角度研究老龄化的征兆,在理解老龄化机制和开发准确预测年龄的模型的机制方面,可以发挥独特的作用。先前的研究采用了基因表达和DNA甲基化数据,以准确预测年龄。在这方面,我们建议了一个新的人类年龄估计框架,使用人类皮肤纤维纤维化基因表达表达数据的信息。首先,我们提出了一个新的空间代表以及基因表达数据的数据增强方法。接下来,为了预测年龄,我们设计了一个神经网络结构,并将其应用到原始和扩充数据的新表述中,作为一种共同分类方法。我们的实验结果表明,拟议的框架优于使用DNA甲基化和基因表达数据的最新年龄估计方法。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员