This paper introduces a new neural network-based estimation approach that is inspired by the biological phenomenon whereby humans and animals vary the levels of attention and effort that they dedicate to a problem depending upon its difficulty. The proposed approach leverages alternate models' internal levels of confidence in their own projections. If the least costly model is confident in its classification, then that is the classification used; if not, the model with the next lowest cost of implementation is run, and so on. This use of successively more complex models -- together with the models' internal propensity scores to evaluate their likelihood of being correct -- makes it possible to substantially reduce resource use while maintaining high standards for classification accuracy. The approach is applied to the digit recognition problem from Google's Street View House Numbers dataset, using Multilayer Perceptron (MLP) neural networks trained on high- and low-resolution versions of the digit images. The algorithm examines the low-resolution images first, only moving to higher resolution images if the classification from the initial low-resolution pass does not have a high degree of confidence. For the MLPs considered here, this sequential approach enables a reduction in resource usage of more than 50\% without any sacrifice in classification accuracy.


翻译:本文介绍了一种新的基于神经网络的估算方法,该方法的灵感来自生物现象,人类和动物根据困难的不同,对一个问题的关注和努力程度各不相同。拟议方法利用替代模型对其自身预测的内部信任度。如果费用最低的模型对其分类有信心,那么这就是所使用的分类;如果不是的话,实施成本次低的模型就运行,等等。使用相继更为复杂的模型 -- -- 连同模型的内部倾向分数来评价其正确性的可能性 -- -- 使得有可能大大减少资源使用,同时保持高的分类准确性标准。该方法适用于谷歌街景屋数字数据集的数字化识别问题,使用多层Perceptron(MLP)对高分辨率和低分辨率数字图像版本进行训练的神经网络。算法首先审查低分辨率图像,只有在最初的低分辨率通行证的分类不具有高度信心的情况下,才转向更高的分辨率图像。对于这里考虑的MLP来说,这种顺序方法使得资源使用率在不作任何牺牲性分类的情况下减少50%。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员