学习方法的跨学科框架——包括统计学、神经网络和模糊逻辑,本书提供了从数据中学习依赖的原则和方法的统一处理。它建立了一个通用的概念框架,其中可以应用统计学、神经网络和模糊逻辑的各种学习方法,这表明了一些基本原则是当今在统计学、工程学和计算机科学中提出的大多数新方法的基础。书中有一百多幅插图、案例分析和实例,使其成为一本非常有价值的书。

第一部分:概念和理论(第1-4章)。

在第一章的介绍和动机的基础上,我们在第二章给出了归纳学习问题的形式化描述,并介绍了从数据中学习的主要概念和问题。特别地,它描述了一个叫做归纳原理的重要概念。第3章描述了统计中采用的规则化(或惩罚)框架。第四章介绍了Vapnik的统计学习理论(SLT),为有限数据预测学习提供了理论基础。SLT,又名VC理论,对于理解在神经网络、统计和模式识别中开发的各种学习方法,以及开发新的方法,如支持向量机(在第9章中描述)和非归纳学习设置(在第10章中描述)非常重要。

第二部分构造性学习方法(第5-8章)。

这部分描述了回归、分类和密度近似问题的学习方法。目的是展示源于统计、神经网络和信号处理的方法的概念相似性,并讨论它们的相对优势和局限性。只要有可能,我们将构造学习方法与第一部分的概念框架联系起来。第5章描述了各种方法中常用的非线性优化策略。第6章描述了密度近似的方法,包括统计、神经网络和信号处理技术用于数据约简和降维。第7章提供了统计和神经网络回归方法的描述。第8章描述了分类方法。

第三部分: 基于VC的学习方法(第9章和第10章)。

在这里,我们描述了源自VC理论的构造性学习方法。这包括用于几个归纳学习问题的支持向量机(或基于边际的方法)(在第9章)和各种非归纳学习公式(在第10章描述)。

成为VIP会员查看完整内容
0
29

相关内容

本书是对机器学习一个领域的全面综述,处理在分类问题中的未标记数据的使用: 最先进的算法,该领域的分类,应用,基准实验,和未来的研究方向。

在机器学习领域,半监督学习(SSL)处于监督学习(其中所有训练示例都被标记)和非监督学习(其中不给出标记数据)之间。近年来,人们对SSL的兴趣有所增加,特别是在图像、文本和生物信息学等未标记数据丰富的应用领域。这是对SSL的第一次全面概述,介绍了最先进的算法、该领域的分类、选定的应用程序、基准测试,以及对未来研究的展望。半监督学习首先提出了该领域的关键假设和思想:平滑性、聚类或低密度分离、流形结构和转导。本书的核心是介绍根据算法策略组织的SSL方法。经过对生成模型的检查,本书描述了实现低密度分离假设的算法,基于图的方法,和执行两步学习的算法。然后,本书讨论了SSL应用程序,并通过分析大量基准测试的结果为SSL实践者提供了指导方针。最后,本书还介绍了SSL研究的有趣方向。本书以半监督学习和转导之间的关系的讨论结束。

https://mitpress.mit.edu/books/semi-supervised-learning

成为VIP会员查看完整内容
0
64

主动学习是一种有监督的机器学习协议,其中学习算法从大量未标记数据中序列地请求选定数据点的标签。这与被动学习形成了对比,被动学习是随机获取有标记的数据。主动学习的目标是产生一个高度精确的分类器,理想情况下使用的标签要比被动学习达到同样目的所需的随机标记数据的数量少。这本书描述了我们对主动学习的理论益处的理解的最新进展,以及对设计有效的主动学习算法的启示。文章的大部分内容都集中在一种特殊的方法上,即基于不同意见的主动学习,到目前为止,这种方法已经积累了大量的文献。它还从文献中简要地考察了几种可供选择的方法。重点是关于一些一般算法的性能的定理,包括适当的严格证明。然而,本文的目的是教学,集中于说明基本思想的结果,而不是获得最强或最普遍的已知定理。目标受众包括机器学习和统计学领域的研究人员和高级研究生,他们有兴趣更深入地了解主动学习理论最近和正在进行的发展。

成为VIP会员查看完整内容
1
64

从事数据科学方面的工作时,活用各种相关函式库、软体框架、模组、工具包是很好的做法,但如果原本完全不懂数据科学,从头开始也是一种不错的做法。本书将采取土法炼钢从头学起的方式,带领读者认识与数据科学相关的许多工具与演算法。

你只要具备基本的数学能力,以及程式设计的基础,本书就可以帮你在遇到相关的数学与统计知识时,不至于感到害怕,而且还能让你学会一个数据科学家所需具备的相关骇客技术。如今到处充斥着各种杂乱的数据资料,其中包含许多问题的解答,但也有很多微妙之处,甚至连问题本身都还没被提出来过。如果你真心想要挖掘问题的解答,本书将可以提供你一些相关的知识。

首先来一堂Python速成班 学习线性代数、统计、机率的基础知识——并学会何时、如何在数据科学领域中灵活运用这些知识 搜集、探索、清理、转换、处理各种数据资料

深入理解机器学习的基础 灵活运用像是k最近邻、单纯贝氏、线性与逻辑回归、决策树、神经网路、集群等种种模型

探讨推荐系统、自然语言处理、网路分析、MapReduce与数据库的相关知识

名人推荐 「Joel带领我们领略探索数据科学,让我们从一般的好奇心,进入到更深入的理解,并学会所有资料科学家都应该知道的各种实用演算法。」 ——Rohit Sivaprasad, Soylent公司数据科学家

【Table of Contents】目录/大纲/内容概要

第1章简介

第2章Python速成班

第3章数据视觉化

第4章线性代数

第5章统计学

第6章机率

第7章假设与推论

第8章梯度递减

第9章取得数据资料

第10章处理数据资料

第11章机器学习

第12章k最近邻

第13章单纯贝氏

第14章简单线性回归

第15章多元回归

第16章逻辑回归

第17章决策树

第18章神经网路

第19章集群

第20章自然语言处理

第21章网路分析

第22章推荐系统

第23章资料库与SQL

第24章MapReduce

第25章勇往直前,数据科学做就对了

成为VIP会员查看完整内容
0
35

「本书提供许多绝佳的机器学习实用案例。有别于工具书或理论证明,本书着重于实际问题处理,因此具备程式设计背景及对机器学习有兴趣的读者们均可轻松入门。」

  • Max Shron, OkCupid

如果你是平时喜欢上网搜集各种资料的程式设计师,想寻找并学习资料分析的方法与工具,本书将会是您了解机器学习最好的起点。在Machine Learning领域中,包含各种分析问题的工具与方法,可以让我们很方便地架构出一套自动分析资料系统,使电脑可以自动分析。不过这些方法的背后,通常都蕴含着艰涩、难懂的数学理论,因而提高了学习门槛。有鉴于此,本书作者Drew Conway和John Myles准备了许多实用案例。在本书中,他们将以生动活泼的方式,使用案例导向方式,透过生活实例,带领我们一起学习这些Machine Learning工具和统计工具的实际应用。经由这些过程学习机器学习领域的核心与价值,而非传统数学导向的介绍方式。

本书采用实例导向、问题导向的介绍方式,在每一个章节中,透过实际问题,介绍机器学习典型问题与解决方法。其中包含:分类问题、预测问题、最佳化问题、推荐系统建置问题...等,在书中都会一一介绍。本书所有程式均以R语言撰写,于每个章节中将学到:如何以R语言分析资料,并撰写简易机器学习演算法。《机器学习骇客秘笈》本书,是专为机器学习领域的初学者所写的,无论是商业、政府机关或学术界...等都适用。

chapter 01使用R语言 chapter 02资料探索 chapter 03文本分类:垃圾邮件判断 chapter 04项目排序:优先收件匣 chapter 05回归分析:预测网页浏览人次 chapter 06正则化:文本回归 chapter 07最佳化:破解密码 chapter 08 PCA:建立股价指数 chapter 09 MDS:视觉化呈现美国参议员相似度 chapter 10 kNN:推荐系统 chapter 11分析社群关系图 chapter 12模型比较

成为VIP会员查看完整内容
0
38

这本书没有假设读者在统计方面有任何预先训练,这本书的第一部分描述了基本的统计原理,从一个观点,使他们的缺点直观和容易理解。重点是用语言和图形来描述概念。第二部分描述了解决第一部分所涵盖问题的现代方法。使用来自实际研究的数据,包括许多例子来说明传统程序的实际问题,以及更多的现代方法如何能对统计研究的许多领域中得出的结论产生实质性的影响。

这本书的第二版包括了自从第一版出现以来发生的一些进展和见解。包括与中位数相关的新结果,回归,关联的测量,比较依赖组的策略,处理异方差的方法,以及效应量的测量。

成为VIP会员查看完整内容
0
41

这本教科书提供了一个简明的,易理解的和引人入胜的深度学习的第一个介绍,提供了大量连接主义模型。本文以简单直观的方式探索最流行的算法和架构,并逐步解释数学推导。内容涵盖卷积网络、LSTMs、Word2vec、RBMs、DBNs、神经图灵机、内存网络和自动编码器。整本书提供了大量的工作Python代码示例,代码也在附带的网站上单独提供。

主题和特点:

  • 介绍机器学习的基本原理,以及深度学习的数学和计算先决条件
  • 讨论前馈神经网络,并探索这些可应用于任何神经网络的修改
  • 检查卷积神经网络,和递归连接到前馈神经网络
  • 描述分布式表示的概念、自动编码器的概念以及深度学习语言处理背后的思想
  • 介绍了人工智能和神经网络的简史,并回顾了在深度学习和连接主义方面有趣的开放研究问题
  • 这本清晰而生动的深度学习入门书是计算机科学、认知科学和数学以及语言学、逻辑、哲学和心理学等领域的研究生和高级本科生的必备读物。

桑德罗·斯坎西博士是萨格勒布大学逻辑学助理教授,也是克罗地亚萨格勒布大学代数学院的数据科学讲师。

地址:

https://link.springer.com/book/10.1007/978-3-319-73004-2?utm_source=springer&utm_medium=referral&utm_content=null&utm_campaign=SRCN_3_LL01_CN_CNJS_CS_textbook

成为VIP会员查看完整内容
0
46

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
145

高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。

这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。

成为VIP会员查看完整内容
0
119

贝叶斯数据分析第三版,这本经典的书被广泛认为是关于贝叶斯方法的主要著作,用实用的方法来分析数据和解决研究问题。贝叶斯数据分析,第三版继续采取一种实用的方法来分析使用最新的贝叶斯方法。作者——统计界权威——在介绍高级方法之前,先从数据分析的角度介绍基本概念。在整个文本中,大量的工作示例来自实际应用和研究,强调在实践中使用贝叶斯推理。

第三版新增

  • 非参数建模的四个新章节
  • 覆盖信息不足的先验和边界回避的先验
  • 关于交叉验证和预测信息标准的最新讨论
  • 改进的收敛性监测和有效的样本容量计算迭代模拟
  • 介绍了哈密顿的蒙特卡罗、变分贝叶斯和期望传播
  • 新的和修改的软件代码

这本书有三种不同的用法。对于本科生,它介绍了从第一原则开始的贝叶斯推理。针对研究生,本文提出了有效的方法,目前贝叶斯建模和计算的统计和相关领域。对于研究人员来说,它提供了应用统计学中的各种贝叶斯方法。其他的资料,包括例子中使用的数据集,所选练习的解决方案,以及软件说明,都可以在本书的网页上找到。

贝叶斯数据分析课程

https://avehtari.github.io/BDA_course_Aalto/index.html

成为VIP会员查看完整内容
0
149

简介: 深度学习通常被认为具有解决问题的近乎形而上的能力。 然而,深度学习背后的技术通常被视为神秘的黑匣子。 在本教程中,我们试图为深入了解深度学习提供坚实的基础。 我们的主要重点是反向传播和自动微分,但我们还将讨论各种相关主题,包括梯度下降和出现的各种参数。 此外,我们指出了深度学习与其他非深度技术之间的许多联系,这些联系主要是隐马尔可夫模型(HMM)和支持向量机(SVM)。 但是首先,我们讨论人工神经网络,这是深度学习的基本组成部分。

大纲介绍:

  • 介绍
  • 神经网络的发展
  • 为什么是神经网络呢?
  • 决定
  • 自动微分
  • 反向传播
  • 结论
  • 问题
  • 附件
成为VIP会员查看完整内容
0
23
小贴士
相关论文
Maria-Florina Balcan,Dravyansh Sharma
0+阅读 · 9月16日
Daniel A. Roberts,Sho Yaida,Boris Hanin
17+阅读 · 6月18日
Feng Xia,Ke Sun,Shuo Yu,Abdul Aziz,Liangtian Wan,Shirui Pan,Huan Liu
30+阅读 · 5月3日
A Survey of Deep Learning for Scientific Discovery
Maithra Raghu,Eric Schmidt
26+阅读 · 2020年3月26日
Optimization for deep learning: theory and algorithms
Ruoyu Sun
80+阅读 · 2019年12月19日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
320+阅读 · 2019年4月10日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
8+阅读 · 2018年9月6日
Na Lei,Zhongxuan Luo,Shing-Tung Yau,David Xianfeng Gu
3+阅读 · 2018年5月31日
Yu-Xiong Wang,Ross Girshick,Martial Hebert,Bharath Hariharan
14+阅读 · 2018年4月3日
Top