Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
翻译:元图是目前在不同信息网络上进行类似搜索的最有力工具, 元图是收集复杂结构信息的元路径的构成。 然而, 目前基于元图的关联性计算只考虑复杂的结构信息, 却忽略了其嵌入的元路径信息。 为了解决这个问题, 我们建议MEta- GrAph基于网络的嵌入模型, 分别称为MEGA和MEGA+++。 MEGA模型使用由元图及其嵌入的元路径同时在节点之间产生的标准化相关性或相似性计量, 然后利用 Exronor 分解法来进行节点嵌入。 MEGA++ 进一步便利了同时考虑元图中所有元信息隐藏关系的高温- 矩阵分解配置方法的使用。 在两个真实数据集上进行的广泛实验表明MEGA 和 MEGA+++ 要比最新方法更有效。