This paper focuses on the numerical scheme of highly nonlinear neutral multiple-delay stohchastic McKean-Vlasov equation (NMSMVE) by virtue of the stochastic particle method. First, under general assumptions, the results about propagation of chaos in $\mathcal{L}^p$ sense are shown. Then the tamed Euler-Maruyama scheme to the corresponding particle system is established and the convergence rate in $\mathcal{L}^p$ sense is obtained. Furthermore, combining these two results gives the convergence error between the objective NMSMVE and numerical approximation, which is related to the particle number and step size. Finally, two numerical examples are provided to support the finding.
翻译:本文侧重于基于随机粒子法的高度非线性中性多延缓性麦肯-弗拉索夫方程式(NMSMVVE)的数值方案。 首先,根据一般假设,显示以 $mathcal{L ⁇ p$ 感知的混乱蔓延结果。 然后,建立与相应粒子系统的驯化尤勒-马鲁山法,并获得以 $\mathcal{L ⁇ p$ 感知的趋同率。 此外,将这两个结果结合起来,就NMSMVE目标与与与粒子号和步骤大小相关的数字近似值之间得出了趋同差。 最后,提供了两个数字例子来支持这一发现。