Multigraded Betti numbers are one of the simplest invariants of multiparameter persistence modules. This invariant is useful in theory -- it completely determines the Hilbert function of the module and the isomorphism type of the free modules in its minimal free resolution -- as well as in practice -- it is sometimes easy to visualize and it is one of the main outputs of current multiparameter persistent homology software, such as RIVET. However, to the best of our knowledge, no bottleneck stability result with respect to the interleaving distance has been established for this invariant so far, and this potential lack of stability limits its practical applications. We prove a stability result for multigraded Betti numbers, using an efficiently computable bottleneck-type dissimilarity function we introduce. Our notion of matching is inspired by recent work on signed barcodes, and allows matching of bars of the same module in homological degrees of different parity, as well as for matchings of bars of different modules in homological degrees of the same parity. Our stability result is a combination of Hilbert's syzygy theorem, Bjerkevik's bottleneck stability for free modules, and a novel stability result for projective resolutions. We also prove, in the $2$-parameter case, a $1$-Wasserstein stability result for Hilbert functions with respect to the $1$-presentation distance of Bjerkevik and Lesnick.


翻译:多级贝蒂数字是多参数持久性模块的最简单变量之一。 这种变量在理论上是有用的。 它在理论上完全决定模块的Hilbert函数和自由模块的自由模块的无变式类型, 在其最低自由分辨率中, 以及在实践中, 它有时很容易想象, 它是当前多参数持续同质软件, 如 RiveT 的主要产出之一。 然而, 根据我们所知, 迄今尚未为这一变量的互换距离建立瓶颈稳定性, 而这种不稳定的可能性限制了它的实际应用。 我们证明, 多级贝蒂数字的多级、 多级、 多级、 多级、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 软性、 和性、 软性、 软性、 软性、 制、 等、 制、 制、 等、 等、 等、 等、 等、 等、 和性、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 和性、 和性、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、 等、

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员