This paper is devoted to a practical method for ferroalloys consumption modeling and optimization. We consider the problem of selecting the optimal process control parameters based on the analysis of historical data from sensors. We developed approach, which predicts results of chemical reactions and give ferroalloys consumption recommendation. The main features of our method are easy interpretation and noise resistance. Our approach is based on k-means clustering algorithm, decision trees and linear regression. The main idea of the method is to identify situations where processes go similarly. For this, we propose using a k-means based dataset clustering algorithm and a classification algorithm to determine the cluster. This algorithm can be also applied to various technological processes, in this article, we demonstrate its application in metallurgy. To test the application of the proposed method, we used it to optimize ferroalloys consumption in Basic Oxygen Furnace steelmaking when finishing steel in a ladle furnace. The minimum required element content for a given steel grade was selected as the predictive model's target variable, and the required amount of the element to be added to the melt as the optimized variable. Keywords: Clustering, Machine Learning, Linear Regression, Steelmaking, Optimization, Gradient Boosting, Artificial Intelligence, Decision Trees, Recommendation services
翻译:本文专门论述铁合金消费模型和优化的实用方法。 我们考虑在分析传感器历史数据的基础上选择最佳流程控制参数的问题。 我们开发了方法, 预测化学反应的结果, 并提出铁合金消费建议。 我们方法的主要特征是简单的解释和噪声阻力。 我们的方法基于 k- 平均值组合算法、 决定树和线性回归。 方法的主要理念是确定流程相似的情况。 为此, 我们提议使用基于 k- 比例的数据集组合算法和分类算法来确定集群。 这一算法也可以应用到各种技术流程中, 在本条中, 我们演示其在冶金中的应用。 为了测试拟议方法的应用, 我们使用这种方法来优化基本 Oxygen Furnace 钢制炼炼炼炉中的铁消耗量。 给定钢级的最低限度要求元素内容被选为预测模型的目标变量, 以及需要将元素添加到熔化中以优化变量的数值 。 关键词: 聚合、 制造钢合、 智能 、 深层建议 、 建筑 、 研究 研究 、 研究 研究 研究 研究 研究 研究 研究 、 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 建议 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究 研究