We propose a sparse vector autoregressive (VAR) hidden semi-Markov model (HSMM) for modeling temporal and contemporaneous (e.g. spatial) dependencies in multivariate nonstationary time series. The HSMM's generic state distribution is embedded in a special transition matrix structure, facilitating efficient likelihood evaluations and arbitrary approximation accuracy. To promote sparsity of the VAR coefficients, we deploy an $l_1$-ball projection prior, which combines differentiability with a positive probability of obtaining exact zeros, achieving variable selection within each switching state. This also facilitates posterior estimation via Hamiltonian Monte Carlo (HMC). We further place non-local priors on the parameters of the HSMM dwell distribution improving the ability of Bayesian model selection to distinguish whether the data is better supported by the simpler hidden Markov model (HMM), or the more flexible HSMM. Our proposed methodology is illustrated via an application to human gesture phase segmentation based on sensor data, where we successfully identify and characterize the periods of rest and active gesturing, as well as the dynamical patterns involved in the gesture movements associated with each of these states.
翻译:我们提出一种稀薄的矢量自动递减(VAR)隐藏半马尔科夫模型(HSMM),用于在多变非静止时间序列中模拟时和时代(例如空间)依赖性。HSMM的通用状态分布嵌入一个特殊的过渡矩阵结构中,有利于高效的概率评估和任意近似准确性。为了促进VAR系数的宽度,我们先部署一个1美元球投影,将差异性与获得准确零的积极可能性结合起来,在每个切换状态中实现变量选择。这也有利于通过汉密尔顿蒙特卡洛(HMC)进行后方估计。我们进一步将非本地的前身放在HSMM的分布参数上,提高Bayesian模型选择的能力,以区分数据是否得到更简单的隐蔽的Markov模型(HMM)或更灵活的HSMMM的更好支持。我们提出的方法通过基于感官数据的人类姿态阶段分割应用来说明我们成功地识别和描述休息和积极定位的时期,以及与每一个状态相关的手势运动的动态模式。