We propose a sparse vector autoregressive (VAR) hidden semi-Markov model (HSMM) for modeling temporal and contemporaneous (e.g. spatial) dependencies in multivariate nonstationary time series. The HSMM's generic state distribution is embedded in a special transition matrix structure, facilitating efficient likelihood evaluations and arbitrary approximation accuracy. To promote sparsity of the VAR coefficients, we deploy an $l_1$-ball projection prior, which combines differentiability with a positive probability of obtaining exact zeros, achieving variable selection within each switching state. This also facilitates posterior estimation via Hamiltonian Monte Carlo (HMC). We further place non-local priors on the parameters of the HSMM dwell distribution improving the ability of Bayesian model selection to distinguish whether the data is better supported by the simpler hidden Markov model (HMM), or the more flexible HSMM. Our proposed methodology is illustrated via an application to human gesture phase segmentation based on sensor data, where we successfully identify and characterize the periods of rest and active gesturing, as well as the dynamical patterns involved in the gesture movements associated with each of these states.


翻译:我们提出一种稀薄的矢量自动递减(VAR)隐藏半马尔科夫模型(HSMM),用于在多变非静止时间序列中模拟时和时代(例如空间)依赖性。HSMM的通用状态分布嵌入一个特殊的过渡矩阵结构中,有利于高效的概率评估和任意近似准确性。为了促进VAR系数的宽度,我们先部署一个1美元球投影,将差异性与获得准确零的积极可能性结合起来,在每个切换状态中实现变量选择。这也有利于通过汉密尔顿蒙特卡洛(HMC)进行后方估计。我们进一步将非本地的前身放在HSMM的分布参数上,提高Bayesian模型选择的能力,以区分数据是否得到更简单的隐蔽的Markov模型(HMM)或更灵活的HSMMM的更好支持。我们提出的方法通过基于感官数据的人类姿态阶段分割应用来说明我们成功地识别和描述休息和积极定位的时期,以及与每一个状态相关的手势运动的动态模式。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员