Zhang (2019) presented a general estimation approach based on the Gaussian distribution for general parametric models where the likelihood of the data is difficult to obtain or unknown, but the mean and variance-covariance matrix are known. Castilla and Zografos (2021) extended the method to density power divergence-based estimators, which are more robust than the likelihood-based Gaussian estimator against data contamination. In this paper we introduce the restricted minimum density power divergence Gaussian estimator (MDPDGE) and study its main asymptotic properties. Also, we examine it robustness through its influence function analysis. Restricted estimators are required in many practical situations, in special in testing composite null hypothesis, and provide here constrained estimators to inherent restrictions of the underlying distribution. Further, we derive robust Rao-type test statistics based on the MDPDGE for testing simple null hypothesis and we deduce explicit expressions for some main important distributions. Finally, we empirically evaluate the efficiency and robustness of the method through a simulation study.


翻译:Zhang (2019年) 提出了一个基于Gausian分布法的总体估计方法,根据Gausian分布法,一般参数模型的密度差很难获得或未知,但数据的平均和差异差异性矩阵是已知的。Castilla 和 Zografos (2021年) 将这种方法扩大到密度功率差测算器,这些测算器比基于可能性的Gaussian 估测器更能防止数据污染。在本文中,我们引入了限制最小密度差高西亚估计仪(MDPDGE),并研究其主要的无症状特性。此外,我们通过其影响功能分析来研究它是否稳健。在许多实际情况下,特别在综合无效假设测试中,需要有限制性的估测器,并在此对基本分布的内在限制提供有限的估测器。此外,我们根据MDPDDGGE测试简单无效假设得出强的Rao型测试统计数据,我们通过模拟研究从经验上评估方法的效率和稳健性。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员